Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Endocrinol (Lausanne) ; 12: 596518, 2021.
Article in English | MEDLINE | ID: covidwho-1156116

ABSTRACT

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04365634. Context: Diabetes mellitus was associated with increased severity and mortality of disease in COVID-19 pneumonia. So far the effect of type 2 diabetes (T2DM) or hyperglycemia on the immune system among COVID-19 disease has remained unclear. Objective: We aim to explore the clinical and immunological features of type 2 diabetes mellitus (T2DM) among COVID-19 patients. Design and Methods: In this retrospective study, the clinical and immunological characteristics of 306 hospitalized confirmed COVID-19 patients (including 129 diabetic and 177 non-diabetic patients) were analyzed. The serum concentrations of laboratory parameters including cytokines and numbers of immune cells were measured and compared between diabetic and non-diabetic groups. Results: Compared with non-diabetic group, diabetic cases more frequently had lymphopenia and hyperglycemia, with higher levels of urea nitrogen, myoglobin, D-dimer and ferritin. Diabetic cases indicated the obviously elevated mortality and the higher levels of cytokines IL-2R, IL-6, IL-8, IL-10, and TNF-α, as well as the distinctly reduced Th1/Th2 cytokines ratios compared with non-diabetic cases. The longitudinal assays showed that compared to that at week 1, the levels of IL-6 and IL-8 were significantly elevated at week 2 after admission in non-survivors of diabetic cases, whereas there were greatly reductions from week 1 to week 2 in survivors of diabetic cases. Compared with survival diabetic patients, non-survival diabetic cases displayed distinct higher serum concentrations of IL-2R, IL-6, IL-8, IL-10, TNF-α, and lower Th1/Th2 cytokines ratios at week 2. Samples from a subset of participants were evaluated by flow cytometry for the immune cells. The counts of peripheral total T lymphocytes, CD4+ T cells, CD8+ T cells and NK cells were markedly lower in diabetic cases than in non-diabetic cases. The non-survivors showed the markedly declined counts of CD8+ T cells and NK cells than survivors. Conclusion: The elevated cytokines, imbalance of Th1/Th2 cytokines ratios and reduced of peripheral numbers of CD8+ T cells and NK cells might contribute to the pathogenic mechanisms of high mortality of COVID-19 patients with T2DM.


Subject(s)
COVID-19/immunology , Diabetes Mellitus, Type 2/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , COVID-19/blood , COVID-19/complications , COVID-19/mortality , China/epidemiology , Cytokines/analysis , Cytokines/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/mortality , Female , Humans , Hyperglycemia/blood , Hyperglycemia/complications , Hyperglycemia/immunology , Hyperglycemia/mortality , Immune System/metabolism , Immune System/pathology , Killer Cells, Natural/pathology , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/complications , Lymphopenia/immunology , Lymphopenia/mortality , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Th1 Cells/pathology , Th2 Cells/pathology
2.
Front Immunol ; 11: 607069, 2020.
Article in English | MEDLINE | ID: covidwho-993358

ABSTRACT

Upon recognition of microbial DNA or self-DNA, the cyclic-GMP-AMP synthase (cGAS) of the host catalyzes the production of the cyclic dinucleotide cGAMP. cGAMP is the main activator of STING, stimulator of interferon genes, leading to interferon synthesis through the STING-TBK1-IRF3 pathway. STING is also a hub for activation of NF-κB and autophagy. The present review details the striking similarities between T and B cell responses in severe coronavirus disease 2019 (COVID-19) and both animal or human models of STING gain of function (SAVI syndromes: STING-associated vasculopathy with onset in infancy). Those similarities may be further clues for a delayed activation of STING in severe COVID-19 patients, due to DNA damages following severe acute respiratory syndrome coronaviruses (SARS-CoV-2) infection and unusual role of STING in SARS-CoV-2 control. In early stages, Th2 differentiation are noticed in both severe COVID-19 and SAVI syndromes; then, CD4+ and CD8+ T cells functional exhaustion/senescent patterns due to TCR hyper-responsiveness are observed. T cell delayed over-responses can contribute to pneumonitis and delayed cytokine secretion with over-production of IL-6. Last, STING over-activation induces progressive CD4+ and CD8+ T lymphopenia in SAVI syndromes, which parallels what is observed in severe COVID-19. ACE2, the main receptor of SARS-CoV-2, is rarely expressed in immune cells, and it has not been yet proven that some human lymphocytes could be infected by SARS-CoV-2 through CD147 or CD26. However, STING, expressed in humans T cells, might be triggered following excessive transfer of cGAMP from infected antigen presenting cells into activated CD4+ and CD8+ T cells lymphocytes. Indeed, those lymphocytes highly express the cGAMP importer SLC19A1. Whereas STING is not expressed in human B cells, B cells counts are much less affected, either in COVID-19 or SAVI syndromes. The recognition of delayed STING over-activation in severe COVID-19 patients could prompt to target STING with specific small molecules inhibitors already designed and/or aspirin, which inhibits cGAS.


Subject(s)
B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Membrane Proteins/immunology , SARS-CoV-2/immunology , Th2 Cells/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , B-Lymphocytes/pathology , Basigin/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Dipeptidyl Peptidase 4/immunology , Humans , Interferon Regulatory Factor-3/immunology , Nucleotidyltransferases/immunology , Protein Serine-Threonine Kinases/immunology , Signal Transduction/immunology , Th2 Cells/pathology
4.
Clin Immunol ; 217: 108487, 2020 08.
Article in English | MEDLINE | ID: covidwho-436345

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is an ongoing public health emergency and new knowledge about its immunopathogenic mechanisms is deemed necessary in the attempt to reduce the death burden, globally. For the first time in worldwide literature, we provide scientific evidence that in COVID-19 vasculitis a life-threatening escalation from type 2 T-helper immune response (humoral immunity) to type 3 hypersensitivity (immune complex disease) takes place. The subsequent deposition of immune complexes inside the vascular walls is supposed to induce a severe inflammatory state and a cytokine release syndrome, whose interleukin-6 is the key myokine, from the smooth muscle cells of blood vessels.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Immune Complex Diseases/immunology , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , Th2 Cells/immunology , Vasculitis/immunology , Aged , Antibodies, Viral/biosynthesis , Antigen-Antibody Complex/biosynthesis , Betacoronavirus/immunology , Blood Vessels/immunology , Blood Vessels/pathology , Blood Vessels/virology , COVID-19 , Complement C3/biosynthesis , Coronavirus Infections/complications , Coronavirus Infections/virology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/virology , Disease Progression , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelial Cells/virology , Humans , Immune Complex Diseases/complications , Immune Complex Diseases/virology , Immunity, Humoral , Immunoglobulin G/biosynthesis , Immunoglobulin M/biosynthesis , Interleukin-6/biosynthesis , Male , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/virology , Th2 Cells/pathology , Th2 Cells/virology , Vasculitis/complications , Vasculitis/virology
SELECTION OF CITATIONS
SEARCH DETAIL